Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity.
نویسندگان
چکیده
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. Dynamic cerebral autoregulation (CA) was assessed using transfer-function analysis. Hypoxic exercise resulted in increases in ventilation, hypocapnia, heart rate, and cardiac output when compared with normoxic exercise (P < 0.05); these responses were unchanged following IHC but were elevated following the IH and CH exposure (P < 0.05) with no between-intervention differences. Following IH and/or CH exposure, the greater hypocapnia during hypoxic exercise provoked a decrease in MCAv (P < 0.05 vs. preexposure) that was related to lowered cerebral oxygenation (r = 0.54; P < 0.05). Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.
منابع مشابه
Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac...
متن کاملDynamic cerebral autoregulation during and following acute hypoxia: role of carbon dioxide.
Previous research has shown an inconsistent effect of hypoxia on dynamic cerebral autoregulation (dCA), which may be explained by concurrent CO2 control. To test the hypothesis that hypoxic dCA is mediated by CO2, we assessed dCA (transcranial Doppler) during and following acute normobaric isocapnic and poikilocapnic hypoxic exposures. On 2 separate days, the squat-stand maneuver was used to de...
متن کاملTHE EFFECT OF ARTERIAL O2 SATURATION AND HE ART RATE ON BLOOD PRESSURE DURING HYPOXIA
A periodic increase in blood pressure (BP) occurs during apneic episodes in patients with obstructive sleep apnea (OSA). Several factors including hypoxemia and an increase in heart rate (HR) were reported to be responsible for this increased BP. To examine the contribution of these two factors in increasing BP, 35 healthy male subjects (mean age±SD= 23.64±3.80) were studied in three experi...
متن کاملWavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy
Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic-ischemic encephalopathy (HIE). These neonates received hypothermic therapy during the first 72...
متن کاملEffect of High intensity interval training and hypobaric hypoxia on Body weight changes and Endurance performance in Male wistar rats following the tapering program
Introduction: Adaptation to attitude is a complementary exercise to increase athletes' fitness and physiological performance. The present study investigated the effect of high intensity interval training at the hypobaric hypoxia conditions on weight changes and endurance performance test in rats following a three-weeks tapering period. Materials and Methods: In this experimental study, 25 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 5 شماره
صفحات -
تاریخ انتشار 2008